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We further investigate, both analytically and numerically, the properties of the fractal two-compartment
model introduced by Fuite et al. �J. Fuite, R. Marsh, and J. Tuszynski, Phys. Rev. E 66, 021904 �2002��.
Specifically, we look at the effects of the fractal exponent of the elimination rate coefficient on the long-time
behavior of the pharmacokinetic clearance tail. For small exponent values, the tail exhibits exponential behav-
ior, while for larger values, there is a transition to a power law. The theory is applied to seven data sets
simulating drugs taken from the pharmacological literature.
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I. INTRODUCTION

Pharmacokinetics is the study of the absorption, distribu-
tion, metabolism, and eventual elimination of a drug from
the body �1�. Pharmacological data, which usually consist of
the concentration of a drug in the plasma or blood as a func-
tion of time, are commonly described using compartmental
models �2�. In these models, the body is divided into a col-
lection of compartments, and a drug’s journey between two
different compartments is described by a rate coefficient.
Figure 1 shows an example of a two-compartment model,
where C1 denotes the concentration in the first compartment
�representing, for example, the circulatory system� and C2
denotes the concentration in a peripheral compartment �such
as the liver�. The drug is introduced into the first compart-
ment at a rate f , is reversibly transferred between the two
compartments, and is finally excreted from the system
through the second compartment. The coefficient kij repre-
sents the fractional transfer rate from compartment i to com-
partment j. In the case when all the coefficients are constant
�representing well-stirred conditions�, we obtain the follow-
ing set of differential equations:

Ċ1 = k21C2 − k12C1 +
f

Vd
, �1�

Ċ2 = k12C1 − �k21 + k20�C2, �2�

where f is the infusion rate of the drug into the system and
Vd is the theoretical volume of distribution into which the
dose is dispersed. To obtain an equation in C1 alone, we first
differentiate Eq. �1� with respect to time to give

C̈1 = k21Ċ2 − k12Ċ1, �3�

where f /Vd has been assumed to be constant in time. Equa-

tion �2� is now used to eliminate Ċ2 to give

C̈1 = k21�k12C1 − �k21 + k20�C2� − k12Ċ1. �4�

The term in C2 in Eq. �4� may now be replaced in terms of
C1, C1, and f using Eq. �1� so that

C̈1 = k21k12C1 − k21�k21 + k20��Ċ1 + k12C1 −
f

Vd
� 1

k21
− k12Ċ1.

�5�

Rearranging the terms in Eq. �5� gives the second-order
equation
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FIG. 1. Schematic representation of a two-compartment model
with input at a rate f into compartment 1, reversible transfer be-
tween the two compartments, and elimination from compartment 2.
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C̈1 + �k12 + k20 + k21�Ċ1 + k12k20C1 =
f

Vd
�k21 + k20� . �6�

For bolus infusions, f can be replaced by

f�t� = �D t = 0,

0 t � 0.
� �7�

The homogeneous component of the solution of Eqs. �6� and
�7� can be taken as a sum of terms that are exponential in
time.

Figure 2 shows a typical graph of the concentration in the
first compartment as a function of time. There is an initial
rise as absorption of the drug dominates. After reaching a
maximum concentration, the curve decreases in a long tail as
elimination of the drug dominates. The shape of this elimi-
nation tail is important in determining the clearance of the
drug from the system.

The classical compartmental model is based on two main
assumptions: each compartment must be homogenous �there
is instantaneous mixing�, and the rate coefficients are all con-
stant �the fraction of drug transferred between any two com-
partments does not vary with time�. However, these assump-
tions frequently fail under physiological conditions, which,
by their nature, impose geometric constraints. For example,
the circulatory system consists of a series of bifurcating ves-
sels, and the time it takes for a circulating drug to reach its
target will depend on its path. Similarly, most organs in the
body are complex structures that can be characterized by
hierarchically organized networks, and the diffusion of a
drug through them will be limited by the geometry of the
available surfaces.

It has been shown that physical systems under geometric
constraints exhibit both anomalous diffusion and anomalous
reaction rates. For a particle diffusing through a heteroge-
neous medium, its average mean-square displacement �r2�t��
as a function of time is given by the power law �3�

�r2�t�� 	 t2/�d+2�,

where d is the fractal dimension. Anacker et al. �4� and
Anacker and Kopelman �5� reported results of their computer

simulations for fractal chemical kinetics, leading to the intro-
duction of time-dependent kinetic rate coefficients. For het-
erogeneous chemical reactions �for example, ones that occur
on or inside a fractal medium�, the rate coefficient has been
found to be a decreasing power of time �6,7�,

k�t� = k0t−�, �8�

where � is the heterogeneity, or fractal, exponent and can be
expressed in terms of the spectral dimension ds as follows:

� = 1 −
ds

2
. �9�

In pharmacokinetics, homogeneous conditions are consid-
ered “well stirred” and heterogeneous conditions near tissues
are considered “understirred” �8�. While the homogeneous
portions of the circulatory system can be described using
conventional kinetics, regional volumes such as those feed-
ing the liver are fractal and thus should be governed by frac-
tal kinetics.

Weiss �9� incorporated long-time fractal trapping kinetics
into a noncompartmental circulatory pharmacokinetic model,
an approach that is perhaps best suited for low-clearance
drugs. Other approaches include the homogenous-
heterogeneous distribution model introduced by Macheras
�10� to take into account the global and regional natures of
blood flow to organs. Karalis et al. �11� and Karalis and
Macheras �12� developed the concept of a fractal volume of
distribution and applied it to a number of drugs. They found
that in most cases, there was a significant difference between
the fractal volume and the conventional volume of distribu-
tion. Furthermore, they found that the fractal volume of dis-
tribution scales almost linearly with body mass.

Fractal rate coefficients can be incorporated into a com-
partmental model through the use of Eq. �8�. The model re-
mains linear, but the fractal rate coefficients introduce a time
dependence. In the first quantitative application of a fractal
compartmental model, Fuite et al. �13� incorporated the
physical structure of the liver, the organ responsible for
eliminating the cardiac drug mibefradil �14�. The hepatic mi-
crovascular system consists of a series of bifurcating vessels
that follow particular scaling laws, with an estimated spatial
fractal dimension of around 2 �15�. Setting k20=kt−� and
changing the notation to substitute � for C1, the following
fractal kinetic equation equivalent of Eq. �6� was derived:

�̈ + �a + b + kt−���̇ + akt−�� = 0, �10�

where a=k21 and b=k12.
Using Eq. �10� in the analysis of data from four sets of

instrumented dogs �14�, the spectral dimension for the dog
liver was estimated to be between 1.778 and 1.914, giving
reasonable agreement with the available experimental data.
However, this study was limited to the animal model and was
tested for only one drug. Furthermore, a solution to Eq. �10�
was determined only approximately, using perturbation
theory, and was then fit numerically to the experimental data.
In this paper, we further investigate the fractal two-
compartment model, providing some exact analytical solu-
tions as well as using numerical simulations for several sets

FIG. 2. A pharmacokinetic profile of drug concentration C as a
function of time t, generated using Eq. �1� with the following values
chosen for illustration: k12=0.5 h−1, k21=1.0 h−1, k20=1.5 h−1, and
Vd=10.0 L.
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of experimentally determined parameters to generate a spec-
trum of fractal exponents that characterize the system. These
exponents will be related to the shape of the long-time tail of
the concentration profile, which allows its use as a diagnostic
technique in, for example, the search for hepatic abnormali-
ties.

II. ANALYTICAL SOLUTIONS

Fuite et al. �13� derived Eq. �10� as the basic modeling
tool in the application of fractality to the pharmacokinetics of
two-compartment models. Although Eq. �10� seems easily
tractable at first glance, it in fact poses a serious mathemati-
cal challenge in the general case where the exponent � is a
noninteger number. The approach applied by Fuite et al. in
solving this equation was based on an approximate perturba-
tive method of finding solutions that deviate only slightly
from those obtained in the homogenously stirred case. While
this method worked well in the case of mibefradil, there is no
guarantee that it can be applied to a broad spectrum of drugs.
In the present paper, we first examine the analytical solutions
to Eq. �10� under special cases, before turning to numerical
simulations performed for a wide range of drugs.

A. Case 1

We first consider the case where �=0, which yields the
classical two-compartmental model for homogeneously
stirred compartments:

�̈ + �a + b + k��̇ + ak� = 0. �11�

The solution is expressed in general as a sum of exponen-
tials:

��t� = exp
−
t

2
�a + b + k���B1 exp
 t

2
��a + b + k�2 − 4ka�

+ B2 exp
−
t

2
��a + b + k�2 − 4ka�� . �12�

A set of elimination curves for a range of coefficients is
illustrated in Fig. 3.

B. Case 2

In the special case when �=1 in Eq. �10�, which corre-
sponds to highly heterogeneous kinetics, the basic equation
can be written as

�̈ + a + b +
k

t
��̇ + a

k

t
� = 0. �13�

This equation can be solved by postulating an ansatz in the
form �=uv, dividing by v and imposing a convenient form
for v to eliminate the coefficient of u̇. It can be reduced to an
equation for u that can be cast in the standard Whittaker form
�16�. We then find solutions of the form

��t� = c1� ka

a + b
,k;− �a + b�t� + c2t1−k�1 −

kb

a + b
,2 − k;

− �a + b�t� , �14�

where c1 and c2 are integration constants and

��a,b;t� � M�a,b;t� � 1F1�a,b;t� �15�

is the Kummer function, or the Kummer confluent hypergeo-
metric function. These functions can be cast into the Whit-
taker function form through the identity

M�,��t� � e−t/2t�+1/2
1F11

2
+ � − �,1 + 2�;t� . �16�

In the particular situation where �=1 and b=a, we can sim-
plify the solution to a form in terms of Bessel functions J� so
that

��t� = �C1 exp
 i	

4
�1 − k��
1 + k

2
�e−at−

at

2
��1−k�/2

�J�−1+k�/2�− iat� + C2 exp
−
i	

4
�1 − k��

�
3 − k

2
�e−at−

2t

a
��1−k�/2

J�1−k�/2�− iat�� . �17�

This solution exhibits a combination of exponential and
power-law long-time asymptotics.

FIG. 3. A family of pharmacokinetic profiles, C�t�, showing
elimination from a classical model following Eq. �3�. The param-
eters were taken to be a=2.0 h−1, b=5.0 h−1, B1=1.0, and B2=1.0.
The curves correspond to, from top to bottom, k=0.05 h−1,
k=0.5 h−1, k=1.0 h−1, k=2.0 h−1, and k=3.0 h−1.
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C. Case 3

The next special case considered that lends itself to an
analytical solution to Eq. �10� involves taking b=0 �corre-
sponding to fast clearance� so that the basic equation takes
the form

�̈ + �a + kt−���̇ + akt−�� = 0. �18�

Multiplying Eq. �18� on both sides by t� and introducing a
new dependent variable F� �̇+a� reduces it to an inte-
grable first-order equation

t�Ḟ + kF = 0. �19�

For 0���1, we can solve Eq. �19� to obtain

F = F0 exp kt−�+1

� − 1
� . �20�

Hence

��t� = C1e−at + C2e−at�t

dt̃ exp
at̃ −
kt̃1−�

1 − �
� . �21�

From Eq. �13�, asymptotically, ��t�	C1 exp�−at�+C2 as t
→. For �=1, we find that

F = F0t−k �22�

and hence

� = e−at�t

F0t̃−keat̃dt̃ . �23�

For 0���1���1�, we have

��t� = �C0 + C1�t

dt̃

exp
− at̃ −
k�t̃�1−�

1 − �
�

�g�t̃��2 �g�t� , �24�

where

g�t� =
1

a
− t − 1

a
�exp�− at� + t 1F1
 1

1 − �
,

1

1 − �
+ 1;

− kt1−�

1 − �
� + �

p=1



�
q=1



Ap,qt1+p+q�1−��,

Ap,q =
− a�q�1 − �� + p�Ap−1,q − k�q�1 − �� + p + ��Ap,q−1 − kaAp−1,q−1

�q�1 − �� + p��q�1 − �� + p + 1�
, p � 1, q � 1,

Ap,0 =
�− 1�pap

�p + 1�!
,

A0,q =
�− 1�qkq

�1 − ��q+1
 1

1 − �
+ q�q!

. �25�

Equation �24� represents a combination of exponential and
stretched-exponential behavior superimposed with special
functions.

D. Case 4

The situation where the rate of elimination exceeds the
recycling rate �i.e., a�b, which is not as strong a condition
as the one used in the previous case� leads to a number of
tractable forms even for arbitrary �. The term in b is put on
the right-hand side of Eq. �10� and the whole divided by �̇
+a� �assumed �0�. Multiplying the numerator and denomi-
nator of the right-hand side by 1/a and assuming 1��̇ /a�,
we obtain a Bernoulli equation after one integration:

�̇ + a� = exp
 kt−�+1

− � + 1
+ d0��−b/a �26�

and we can integrate it to find

� = 
a + b

a
�e−�a+b�t�t

e�a+b�t̃ exp kt̃ −�+1

− � + 1
+ d0�dt̃�a/�a+b�

.

�27�

When a�b and �=1, we obtain another form of the Ber-
noulli equation: namely,

�̇ + a� = c0t−k�−b/a, �28�

which can be interpreted to give

� = 
a + b

a
�c0e−�a+b�t�t

t̃ −ke�a+b�t̃dt̃�a/�a+b�

. �29�

We note that a vast number of these solutions have exponen-
tial, stretched exponential, and/or power-law characteristics.
In order to investigate these properties, we performed a nu-
merical study of representative cases.
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III. COMPUTER SIMULATIONS

We performed computer simulations of Eq. �10� for dif-
ferent values of the exponent �. All simulations were per-
formed using Mathematica, version 3. Seven different sets of
values for the kinetic rate coefficients a, b, and k were cho-
sen from the pharmacological literature from papers report-
ing the applicability of two-compartment models to experi-
mental data analysis. The trade names for the drugs as well
as their associated parameters are listed in Table I. Both
�-aminocaproic �epsilonACA� and transexamic acid �TA� are
used to reduce blood loss and the need for transfusion in
cardiac surgery patients. The C1-inhibitor protein �C1-INH�
is used to treat various conditions, including hereditary an-
gioedema, acute myocardial infarction, and arthritis. Ciprof-
loxacin and ofloxacin are antimicrobials of the quinolone
family, ganciclovir is used as a prophylaxis and antiviral
agent, and ibuprofen is a nonsteroidal anti-inflammatory
agent.

Initially, the second-order differential equation was solved
numerically for each set of parameters for fractal exponents
in the range 0���0.1, generating 11 curves for each of the
7 drugs. It was found that the long-time tail of the resulting
concentration-versus-time curves was best described by a
single exponential term. In order to characterize the effect of
the fractal exponent � on the shape of the exponential tail,

log-linear plots of the tails were generated and the resulting
slope � was calculated, where

C�t� 	 e−�t. �30�

Two composite plots �Figs. 4 and 5� of � as a function of �
show a linear relationship of the form

� = m�k�� + n�k� . �31�

The values for the slope m and the y intercept n are listed in
Table II. Based on a somewhat limited number of data sets,
we have noticed that both m and n are linearly proportional
to the elimination coefficient k. This argument requires fur-
ther study.

The study was then repeated for higher values bracketing
t−1: namely, 0.95���1.05. It was found that in most cases,
the elimination tail was now best described by a power law
of the form

C�t� 	 t−�. �32�

Figure 6 shows a plot of the power exponent � as a function
of �. In this case, the relationship between the two param-
eters is nonlinear, as might be expected since the behavior of
the elimination tail undergoes a crossover as � is varied from
close to zero to near unity.

Figure 7 compares the results for the drug ciprofloxacin in
two different cases �=0.05 and �=1.05. The former pro-

FIG. 4. The linear relationship between the exponential coeffi-
cient � and �.

TABLE I. Values for the published kinetic coefficients for dif-
ferent drugs.

Reference Drug
a

�h−1�
b

�h−1�
k

�h−1�

�17� EpsilonACA 0.035 0.023 0.022

�18� C1-inhibitor protein 0.019 0.021 0.012

�19� Ciprofloxacin 0.907 0.843 0.464

�20� Ganciclovir 0.66 1.44 0.022

�21� Ibuprofen 0.59 1.52 0.05

�19� Ofloxacin 2.550 1.010 0.208

�22� Transexamic acid 0.018 0.021 0.014

FIG. 5. The linear relationship between the exponential coeffi-
cient � and �.

TABLE II. Values for the slope and y intercept of � versus �
graphs.

Drug Slope m Intercept n R2

EpsilonACA −0.0505 �0.0005� 0.01105 �0.0001� 0.9987

C1-inhibitor protein −0.0236 �0.0004� 0.00468 �0.00007� 0.9976

Ciprofloxacin −0.611 �0.002� 0.2080 �0.0007� 0.9995

Ganciclovir −0.0356 �0.0007� 0.0066 �0.0001� 0.9959

Ibuprofen −0.065 �0.001� 0.0132 �0.0002� 0.9964

Ofloxacin −0.489 �0.003� 0.1441 �0.0009� 0.9986

Transexamic acid −0.0251 �0.0003� 0.00515 �0.00007� 0.9978
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duces a long-time exponential tail, while the latter produces
a power-law tail. Therefore, two distinctly different types of
behavior can be generated by a fractal, time-dependent elimi-
nation coefficient. In addition, it was found that in the case of
ciprofloxacin, the transition from exponential to power-law
behavior occurred at around �=0.5, the value identified as
the crossover point.

IV. DISCUSSION AND CONCLUSION

Fractality can occur in pharmacokinetic systems as a re-
sult of either the geometry of the eliminating organ or
anomalous diffusion through constricted spaces �to be dis-
cussed in detail in a following paper�. Previously �13�, we
showed that fractal elimination leads to power-law tails in
the pharmacokinetic concentration profile. However, we
have shown here that fractality can also be present in the
case of exponential behavior. Our analytical treatment of the
governing equation indicates that the actual form of the so-
lution is mathematically complex, involving a host of special
functions. Thus it is not surprising that elimination tails
dominated by either an exponential or a power law can bear
the hallmark of fractal kinetics.

We have shown above that there is a distinct relationship
between the shape of the elimination tail �characterized by
either � or �� and the fractal exponent �; in the case of very
small �, the relationship is nicely linear. Therefore, we
should be able to extract knowledge about the underlying
fractal kinetics of a system by analyzing the long-time tail of

the pharmacokinetic profile. While small deviations from
classical kinetics still retain exponential behavior, there is a
value of � where a transition to a power law occurs. Because
a higher value of � indicates a greater deviation from clas-
sical kinetics ��=0�, this appearance and growth of power-
law behavior should be related to the complexity of the un-
derlying system. Consequently, a potentially important
application of this work is in quantifying the correlation be-
tween the body’s pharmacokinetic response and its state of
health �such as liver function�.
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